首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21637篇
  免费   1414篇
  国内免费   858篇
电工技术   1360篇
综合类   1369篇
化学工业   1224篇
金属工艺   2571篇
机械仪表   1789篇
建筑科学   1711篇
矿业工程   468篇
能源动力   354篇
轻工业   1259篇
水利工程   225篇
石油天然气   1853篇
武器工业   261篇
无线电   1932篇
一般工业技术   2809篇
冶金工业   663篇
原子能技术   155篇
自动化技术   3906篇
  2024年   24篇
  2023年   171篇
  2022年   260篇
  2021年   412篇
  2020年   419篇
  2019年   375篇
  2018年   384篇
  2017年   558篇
  2016年   646篇
  2015年   859篇
  2014年   1265篇
  2013年   1197篇
  2012年   1479篇
  2011年   1612篇
  2010年   1357篇
  2009年   1332篇
  2008年   1335篇
  2007年   1478篇
  2006年   1338篇
  2005年   1195篇
  2004年   980篇
  2003年   877篇
  2002年   747篇
  2001年   660篇
  2000年   522篇
  1999年   446篇
  1998年   375篇
  1997年   268篇
  1996年   247篇
  1995年   208篇
  1994年   159篇
  1993年   118篇
  1992年   106篇
  1991年   89篇
  1990年   74篇
  1989年   47篇
  1988年   36篇
  1987年   19篇
  1986年   15篇
  1985年   29篇
  1984年   23篇
  1983年   30篇
  1982年   29篇
  1981年   7篇
  1978年   9篇
  1965年   17篇
  1962年   7篇
  1959年   5篇
  1957年   5篇
  1955年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Many attempts have been made to fabricate lightweight, high-performance, and low-cost polymeric composites. To improve the mechanical performance of the same material compared to conventional composites, paired hybrid materials were manufactured with different lamination structures. Each of six types of hybrid composite was designed by lamination pairing of carbon/aramid fabric and carbon/glass fabric using VARTM. The dependence of the mechanical properties of the samples on the pairing effects of the lamination structures was investigated. All pairing materials did not lead to a large increase of tensile strength due to the domination of carbon fiber, but the mechanical properties of specific laminates were clearly changed by the particular pairing sequence used. Using the limited material, the design of an effective structure was the central laminating condition with a good tensile and bending properties. Laminating position of the carbon fiber was found to play an important role in the stacking design of hybrid composites.  相似文献   
32.
主要简述了当前纺织品服装所具有的功能性,并有针对性的介绍了相应功能及国内外检测标准与方法,对部分缺失检测标准与方法的功能也做了简要的介绍,相信随着相关标准的不断完善,功能纺织品服装将获得极大的发展。  相似文献   
33.
High amplitude non-linear acoustic methods have shown potential for the identification of micro damage in brittle materials such as concrete. Commonly, these methods evaluate a non-linearity parameter from the relative change in frequency and attenuation with strain amplitude. Here, a novel attenuation model is introduced to describe the free reverberation from a standard impact resonance frequency test, together with an algorithm for estimating the unknown model coefficients. The non-linear variation can hereby by analyzed over a wider dynamic range as compared to conventional methods. The experimental measurement is simple and fully compatible with the standardized free-free linear impact frequency test.  相似文献   
34.
The influence of specimen twisting during global anti-plane shear loading in composite split beam specimens is studied. Tests were conducted on specimens with different thicknesses and delamination lengths to produce different amounts of specimen twisting prior to fracture. It is shown that specimen twisting causes mode I stresses to develop, thereby producing mixed mode I–III conditions along the delamination front. This causes near-tip transverse cracks to initiate, prior to delamination advance, at an orientation related to the mode mix. Unlike in homogeneous materials, transverse crack extension is accompanied by planar delamination advance, and transverse crack rotation during extension is restricted by the laminate’s fibers. The overall fracture surface evolution is therefore strongly controlled by specimen geometry. The influence of these findings on the apparent delamination toughness as obtained from composite split beam and other types of mode III tests is discussed.  相似文献   
35.
Preventive pedestrian protection systems are validated by means of fully automated driving tests reproducing safety-critical traffic situations on a proving ground. In order to assess these preventive safety systems, a precise and reproducible collision of a pedestrian dummy with a specific point at the vehicle front, e.g., the left corner of the vehicle, must be ensured. Hence, a track guidance of this specific point is required. Beyond the state of the art a new nonlinear model describing the lateral deviation of any point at the vehicle front to a predefined path is proposed in this paper. Based on this model the method of input–output linearization is used to design a flexible lateral guidance system for an easy application in different vehicles. Furthermore, the closed-loop stability is proven and experimental results are presented.  相似文献   
36.
The use of advanced composite materials such as Fiber Reinforced Polymers (FRPs) in repairing and strengthening reinforced concrete structural elements has been increased in the last two decades. Repairing and strengthening damage structures is a relatively new technique. The aims of this study was to investigate the efficiency and effectiveness of using Carbon Fiber Reinforced Polymer (CFRP) to regain shear capacity of shear-deficient normal weight high strength RC beams after being damaged by thermal shock. Sixteen high strength normal weight RC beams (100 × 150 × 1400 mm) were cast, heated at 500 °C for 2 h and then cooled rapidly by immersion in water, repaired, and then tested under four-point loading until failure. The composite materials used are carbon fiber reinforced polymer plates and sheets. The experimental results indicated that upon heating then cooling rapidly, the reinforced concrete (RC) beams exhibited extensive map cracking without spalling. Load carrying capacity and stiffness of RC beams decreased about 68% and 64%, respectively, as compared with reference beams. Repairing the thermal damaged RC beams allowed recovering the original load carrying without achieving the original stiffness. Repaired beams with CFRP plates with 90° and 45° regained from 90% to 99% of the original load capacity with a corresponding stiffness from 79% to 95%, whereas those repaired with CFRP sheet on the web sides and a combination of CFRP plates and sheet regained from 102% to 107% of the original load capacity with a corresponding stiffness from 81% to 93%, respectively. Finally, finite element analysis model is developed and validated with the experimental results. The finite element analysis showed good agreement as compared with the experimental results in terms of load–deflection and load–CFRP strain curves.  相似文献   
37.
We report an in situ analysis of the microstructure of woven composites using carbon nanotube (CNT)-based conductive networks. Two types of specimens with stacking sequences of (0/90)s (on-axis) and (22/85/−85/−22) (off-axis) were manufactured using ultra-high-molecular-weight polyethylene fibers and a CNT-dispersed epoxy matrix via vacuum-assisted resin transfer molding. The changes in the electrical resistance of the woven composites in response to uniaxial loading corresponded to the changes in the gradient of the stress–strain curves, which is indicative of the initiation and accumulation of microscopic cracking and delamination. The electrical resistance of the woven composites increased due to both elongation and microscopic damage; interestingly, however, it decreased beyond a certain strain level. In situ X-ray computed tomography and biaxial loading tests reveal that this transition is due to yarn compaction and Poisson’s contraction, which are manifest in textile composites.  相似文献   
38.
Background/purposeMeasurements of strains in critical components are often required in addition to finite element calculations when evaluating a structure.MethodsThis paper describes how standard optical fibers, bonded to the surface or embedded in a laminate, can measure strain fields along the entire length of the fiber, using the optical backscatter reflectometer.ResultsA strain field measurement can be much better compared to simulations than the more common single point measurements with strain gauges or Bragg Gratings. Changes of the strain field can be related to damage development and can be used for structural health monitoring. Practical aspects of using the fibers are also discussed.ConclusionDistributed Fiber-Optic Sensing was successfully embedded and bonded to a composite joint. Adhesive damage was identified and the strain field agreed well with FE-Analysis.  相似文献   
39.
An approach for damage inspection of composite structures utilizing carbon nanotubes (CNT) networks is investigated. CNT are dispersed in an epoxy using a processing technique compatible with commonly employed composite manufacturing techniques and subsequently used as matrix for a structural glass fiber reinforced composite. The developed electrical conductivity of the composite system is verified experimentally. The electrically conductive CNT network within the GFRP is exploited through distributed electrical voltage measurements to sense and, ultimately, locate damage in the plane of the composite plate. Damage in the form of cracks or delamination interrupts the continuity of the CNT network separating and isolating regions of the conductive network. Employing electric potential fields these changes can become measurable and can provide information for inversely locating the damage. Electrical Resistance Tomography (ERT) is formulated and experimentally applied to measure changes in the potential fields and deliver electrical conductivity change maps which are used to identify and locate changes in the CNT networks. These changes are correlated to capture the damage in the composite. Different damage modes are studied to assess the capabilities of the technique. The technique shows sensitivity to very small damages; less than 0.1% of the inspected area. The solution of the inverse ERT problem delivers a conductivity change maps which offers an effective localization with nearly 10% error and an inspection area suppression of around 75%. The proposed methodology to create CNT networks enables the application of ERT for Non-Destructive Evaluation of composite materials, previously not possible due to lack of conductivity, thus offering damage sensing and location capabilities even in-situ.  相似文献   
40.
Solid bodies with flow channels can have very heterogeneous structure, whose local variations are difficult to analyze. Yet, this can play an important role affecting characteristics, such as, fluid flow property, strength and heat conductivity. This article presents a method named thermal flow permeametry (TFP) that is applicable for a quick analysis of variations in flow channels, even in meter-sized structures. For illustrating the method, we analyzed the local permeability levels of a large and extremely complex fiber structure. In TFP, hot air is ejected through a structure, while thermal camera measures local surface temperature variations during heating. Gray values of the thermal image are then plotted versus the structures local thickness, density and permeability. We showed that gray values link with local permeability, affected by thickness, density and flow channel tortuousness. We also found out that TFP is very sensitive to local changes in flow channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号